Α-arrestins - new players in Notch and GPCR signaling pathways in mammals.

نویسندگان

  • Loredana Puca
  • Christel Brou
چکیده

For many years, β-arrestins have been known to be involved in G-protein-coupled receptor (GPCR) desensitization. However, β-arrestins belong to a family of proteins that act as multifunctional scaffolding proteins, in particular during trafficking of transmembrane receptors. The arrestin family comprises visual arrestins, β-arrestins and α-arrestins. In mammals, the functions of the α-arrestins are beginning to be elucidated, and they are described as versatile adaptors that link GPCRs or the Notch receptor to E3 ubiquitin ligases and endocytic factors. These α-arrestins can act in sequence, complementarily or cooperatively with β-arrestins in trafficking and ubiquitylation events. This Commentary will summarize the recent advances in our understanding of the functions and properties of these α-arrestin proteins in comparison to β-arrestins, and will highlight a new hypothesis linking their functional complementarity to their physical interactions. α- and β-arrestins could form transient and versatile heterodimers that form a bridge between cargo and E3 ubiquitin ligases, thus allowing trafficking to proceed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Α-arrestin 1 (ARRDC1) and β-arrestins cooperate to mediate Notch degradation in mammals.

Notch signaling is a conserved signaling pathway implicated in embryogenesis and adult tissue maintenance. Notch signaling strength is strictly regulated, notably by maintaining a controlled pool of functional receptor at the cell surface. Mammalian non-activated Notch receptor is internalized, ubiquitylated by the Itch E3 ubiquitin ligase and degraded in the lysosomes. Here, we show that β-arr...

متن کامل

Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles...

متن کامل

Molecular Medicine Arrestin Orchestrates Crosstalk Between G Protein–Coupled Receptors to Modulate the Spatiotemporal Activation of ERK MAPK

G protein– coupled receptors (GPCRs) respond to diversified extracellular stimuli to modulate cellular function. Traditionally, activated receptors couple to G proteins, which transduce downstream signals via second messengers and membrane channels. 1 Active GPCRs are phosphorylated by specific GPCR kinases (GRKs) leading to receptor desensi-tization. Arrestin proteins then bind to the phosphor...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Molecular Signaling in Tumorigenesis of Gastric Cancer

Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2014